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1 Introduction

This technical report describes a nonlinear Bayesian Regression model that can be used to
estimate effluent concentrations from IR hyperspectral data. As the title implies, the model
is constructed to account for background clutter more effectively than current “matched
filter” estimators. Although the main objective is to account for background clutter, which
is the dominant source of variability in IR data, the model could easily be extended to allow
for uncertainties in the atmosphere. The term, “clutter,” refers to the variations that occur
in the image spectra because emissivity and background temperature change from pixel to
pixel. The Bayesian regression model utilizes a more complete description of background
clutter to obtain better estimates. The description is in terms of a “prior distribution” on
background radiance.

The estimates are produced from a nonlinear Bayesian regression model with the use of
an iterative technique that produces the maximum posterior density (MPD) point estimates,
[1], for the desired effluent concentrations. We call it the nonlinear maximum posterior
density (NLMPD) estimator. This estimator is computationally fast (comparable in speed
to matched filter estimators), but it does not produce the full posterior, as a Markov Chain
Monte Carlo estimator would. Consequently, one cannot use the posterior distribution to
produce the optimal RMSE estimator (which is the posterior mean), and one cannot use the
posterior to quantify uncertainty.

To quantify uncertainty, we have developed an asymptotic approximation to the pos-
terior covariance matrix. As with the maximum likelihood approximation for covariance,
the approximation will be “good” when the posterior resembles a normal distribution. As
one will see, the asymptotic approximation seems to work acceptably well, for the effluent
estimation problem.

2 Description of Problem and Relevant Regression Mod-

els

The general problem of interest is to determine the concentration of chemical effluents from
an industrial site using passive IR hyper-spectral images. For each chemical effluent of
interest, we would like to produce a concentration map; in other words, the estimation
algorithm should produce a concentration estimate for each pixel in the image, using the IR
spectrum associated with that pixel. The nonlinear Bayesian model that accomplishes this is
based on a simplified physics model that describes how the IR spectra originate. The physics
model is a simple three-layer transmission model illustrated in Figure 1. The “three layers”
referred to are the ground, the plume, and the atmosphere. In the model, the IR radiation
originates from the ground, and while traveling through the other two layers, it is modified,
according to the formulas presented below. The “plume” is the layer of atmosphere closest
to the ground that may contain the chemical effluents of interest.

Let ν represent the wavenumber (cm−1) of the electro-magnetic radiation, and let Rg(ν),
Rp(ν), and Ra(ν) represent the spectrum leaving the ground, plume, and atmosphere, re-
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Figure 1: Three Layer Physics Model for Passive IR Spectra

spectively. Then the following formulas relate the three to each other;

Rp(ν) = τp(ν)Rg(ν) + (1− τp(ν))B(ν, Tp) (1)

and,
Ra(ν) = τa(ν)Rp(ν) + (1− τa(ν))B(ν, Ta) (2)

In the above formulas, B(ν, T ) represents the Planck black-body function, τa the atmospheric
transmissivity, τp the plume transmissivity, Tp is plume temperature, and Ta is atmospheric
temperature. The plume transmissivity, τp is related to the chemical effluent’s concentrations,
Ci (ppmM) by Beer’s law;

τp(ν) = exp(−
P∑

i=1

Ai(ν)Ci) (3)

where Ai(ν) is the known absorbance spectra for effluent i.
The resulting spectrum, Ra, represents the IR spectra presented to the instrument, but

this is not the spectrum that the instrument observes; The instrument alters the resolution
of the spectrum and noise is added. So to get the observed spectra, Robs(ν), another step
must be added to the model;

Robs(νj) = Ψ ∗Ra(νj) + ej (4)

where Ψ represents an appropriate convolution filter, νj, j = 1, 2, 3...n represent the discrete
wavenumbers that the instrument records, and ej is the instrument noise associated with
wavenumber j. It is assumed that the errors are independent, unbiased, and V ar(ej) is
known.
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Even though the physics model presented above can provide a highly accurate description
of reality, it is, nevertheless, only an approximation of real IR data. It is therefore important
to enumerate the simplifications that the model rests upon;

No Term for Solar Radiation: For this model to be appropriate, one must assume that
either (1) the observations are taken at night, or (2) the contribution of solar radiation
is insignificant for the IR band being used.

The atmosphere can be approximated with one layer: Equation 2 describes a one
layer model for the atmosphere. A more exact description of the atmosphere would di-
vide it into several layers. In our one-layer atmosphere, τa would represent the average
transmissivity, and Ta the average temperature.

The down-welling atmospheric radiance can be ignored: The atmosphere also radi-
ates in a downward direction, and this radiation can be reflected by the ground. This
should be a relatively insignificant term.

There are no correlations or biases in the instrument errors: Periodic instrument cal-
ibrations can introduce correlations into the errors.

2.1 Bayesian Regression Model

The general form of the regression model is, therefore;

Robs(νj) = F (νj; C, η) + ej (5)

where F (ν; C, η) is a function that represents the result Ψ ∗ Ra(ν) from the 3-layer model
outlined previously. In order to calculate the result Ψ ∗ Ra(ν), one must supply values for
the following parameters; C a vector of concentrations of the potential plume effluents, and
η, a vector of all other parameters in the model. Thus η should determine the temperatures
Tp, and Ta, the ground radiance Rg, and the atmospheric transmissivity, τa. The notation
F (ν; C, η) is constructed to emphasize the fact that the observed spectrum, Robs, is a function
of two different set of parameters; The concentrations C, that we desire to estimate from
the data and know little about, and the nuisance parameters, η, for which some auxiliary
information exists.

Some information concerning the nuisance parameters is typically present in the observed
spectrum, Robs, however the spectrum alone is insufficient to estimate all parameters; To pro-
duce a solvable regression model, one needs to add some additional information concerning
the nuisance parameters. The typical solution to this problem has been to determine an
estimate of the η from auxiliary information and plug the estimate into F (ν; C, η), so that
the solution becomes unique. This solution does not account for the uncertainties in the
estimate of η, and therefore has two deficiencies; (1) the uncertainties calculated for the C
are too optimistic, and (2) the estimator is not optimal.

A better solution to the problem is to use the auxiliary information to produce a prior
distribution for η, because this distribution will correctly incorporate uncertainty for η into
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the regression model. Thus one constructs the prior distribution, p(η), with the mean of this
distribution representing the “best estimate” for η and its standard deviations representing
the estimate uncertainty. The prior, p(η) would typically be considered an “informative”
prior; The form of this prior will, of course affect the regression solution for the concentration,
C.

The “primary” nuisance parameters in Equations 1 and 2 are the temperatures Tp, Ta

and the vectors Rg, and τa, so one could use these as the nuisance parameter vector (η =
(Rg, τa, Tp, Ta))). A strategy such as this, greatly inflates the number of unknown parameters
that the regression has to deal with, because both Rg and τa can be of larger dimension than
the data, Robs. A better strategy is to express both Rg and τa in terms of “secondary nuisance
parameters” that have lower dimension and a particularly simple prior distribution. In other
words, we identify a transformation that expresses Rg in terms of parameter vector βg, and
expresses τa in terms of βa, so that the nuisance parameter vector employed is;

η = (βg, βa, Tp, Ta) (6)

To produce a regression model that is entirely Bayesian, we must also supply a prior
for the concentrations, C. However, unlike the η there will usually be no prior information
(outside of some obvious bounding information) that we will want to incorporate into this
prior. It is therefore natural to use a uniform “non-informative” prior on the C. Therefore,
the prior on each concentration, Ci should be uniform over the interval between zero to the
maximum burden for that effluent.

Bayesian regression constructs parameter estimates and associated uncertainties from the
posterior distribution, thus for our specific model, one must calculate statistics associated
with the posterior f(C, η|Robs). The most desirable Bayesian estimates for the unknown
parameters would be the mean of this posterior distribution, although the median and mode
are also used. (Using minimum RMSE as an optimality criteria, one finds that the mean of
the distribution is the best estimate.) The posterior is defined as;

f(C, η|Robs) =
f(Robs|C, η)p(C, η)∫

f(Robs|C, η)p(C, η) dC dη
(7)

with the conditional distribution f(Robs|C, η) defined by the regression model so that

f(Robs|C, η) =
N∏

i=1

φ(Robs(νi);F (νi; C, η), V ar(ei)) (8)

The conditional mean and covariance of the concentrations C are defined by;

Ĉ = E(C|Robs) =
∫

Cf(C, η|Robs) dC dη (9)

and
Cov(C|Robs) =

∫
(C − Ĉ)(C − Ĉ)Tf(C, η|Robs) dC dη (10)

We desire to use the conditional expectation and covariance as estimates for C and the
associated uncertainty (the conditional covariance is actually the the RMSE for the estimate).
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However, there is no quick, closed-form solution for doing this. Monte Carlo methods (i.e.
Markov Chain Monte Carlo simulations) do exist to perform the integrations, but they are
thousands of times slower than current estimators (matched filters). An objective of this
work was to develop an algorithm that quickly produced an approximation to the desired
Bayesian solution.

2.1.1 NLMPD Algorithm

Our “quick approximation” to the conditional expectation presented in Equation 9 is to use
the “maximum posterior density” estimate in place of the conditional mean. The maximum
posterior density is simply the mode of the posterior distribution, and will be a good approx-
imation to the mean when the distribution is symmetric and unimodal. Use of the maximum
posterior density is the equivalent to maximum likelihood for a classical non-linear problem,
and the optimization algorithms applied to maximum likelihood can be easily adapted to
the problem of finding the NPD estimate. We call such an algorithm a non-linear maximum
posterior density (NLMPD) algorithm. Since the priors we will be applying to the regression
problem will be bounded (see the next Section for more information on the prior), the max-
imization algorithm must deal with constraints In other words, determination of the MPD
estimate is a non-linear programming problem, [6] and any algorithm that will solve such a
problem could be applied to obtain the estimates.

We have chosen to use a constrained version of a Levenburg-Marquardt algorithm [7]
to produce the MPD solution. This is an iterative technique, and experience shows that
it converges in a few steps (approximately 3 to 10) for this problem. Thus this algorithm
requires roughly 3 to 10 times the computation that a matched filter estimator would, and
we can consider this algorithm to be roughly of comparable speed to a matched filter.

The other component of the estimation process, calculation of its uncertainty, (as repre-
sented by the conditional covariance presented in Equation 10), is produced by calculating
the asymptotic covariance matrix, which is the Bayesian analog of the maximum-likelihood
covariance. Thus;

Cov(C, η|Robs) ≈ [C−1
prior + dF T W dF ]−1 (11)

where Cprior is the covariance matrix of the prior distribution, and dF is the multivariate
derivative of F (ν; C, η) with respect to the parameter vector (C, η) (and evaluated at the
MDP solution). Finally, W is a diagonal weight matrix with Wii = V ar(ei)

−1. As in the
maximum-likelihood case, this approximation will produce good results when the posterior
distribution is close to normal. As the name implies, the approximation gets better as the
sample size increases (or as the weights go to infinity).

The covariance matrix approximation presented above is most unacceptable, when com-
ponents of the MPD are on the distribution boundaries; In this case the distribution is quite
non-Gaussian, and the asymptotic covariances are too large.

2.1.2 Form of the Regression Priors

To produce Bayesian estimates, one must supply a reasonable prior distribution for the model
parameters, as represented by (C, η). The effluent concentrations, C should be independent

5



PNNL October 2, 2002

of the nuisance parameters, η, so the combined prior can be written as a product;

p(C, η) = p(C)p(η) (12)

The prior on C, p(C), is uniform over a hyper-cube defined by the vectors 0 (lower left-hand
vertex of cube) and Cmax (upper right-hand vertex). Thus p(C) is defined as;

p(C) =
[ 1∏

i
Cmax,i

For 0 ≤ Ci ≤ Cmax,i

0 Otherwise
(13)

This is the standard “non-informative” prior, modified by the bounding information we have
about C. We always have, of course, 0 ≤ Ci, but one might have some arguments about the
exact values to use in the upper bound, Cmax. In that case, one can select a very large value
for the components in Cmax such as 106ppmM .

The prior on the nuisance parameters, p(η) is more complicated because it must convey
realistic information concerning the nuisance parameters. The nuisance parameter vector is
defined as η = (βg, βa, Tp, Ta), with βg parameters describing the ground radiance, Rg;

Rg = Rg0 +
Pg∑
i=1

Vgiβgi (14)

with Rg0 representing the mean of the ground radiance, Vgi orthonormal vectors, and each βgi

representing an independent normal random variable with mean zero and standard deviation
of σgi. In other words, prior distribution of Rg is simply a degenerate multivariate normal
distribution; Expressing Rg in terms of the βg simply reduces the dimensionality of the
problem, because Pg would be much smaller than the dimension of Rg. The quantities that
define this prior distribution (i.e. Rg0, Vgi, and σpi) are produced by an analysis of off-plume
pixels, as described in Section 2.1.2.

Since the objective of this work is to deal with the effects of clutter, we will make a
simplifying assumption about the atmospheric parameters for this initial analysis; It will be
assumed that the atmospheric transmissivity, τa and temperature, Ta are known. We will
also assume that the plume temperature, Tp is known. Our intention is, of course, to relax
this simplifying assumption in the next version of this algorithm.

The information for the plume temperature, Tp can be particularly critical for this es-
timation problem. When the plume is optically thin, it can be shown that the IR data
contains no information concerning the plume temperature, Tp. In this case the supplied
prior distribution for Tp supplies all information concerning the parameter.

2.2 Matched Filter Model

It is useful to describe a popular alternative to the above model, using the same notation.
This popular alternative is commonly called the “matched filter” model even though it would
be more accurately described as a linear regression model. The matched filter estimator is
derived from the same 3-layer model presented in Equations 1 to 4. If these are combined,
one obtains;

Robs = τa(1− τp)(B(Tp)−Rg) + τaRg + (1− τa)B(Ta) + e (15)

6
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The wavenumber, ν, and convolution operator, Ψ, have been dropped to simplify the nota-
tion.

Now the last term in this model, τaRg + (1− τa)B(Ta) + e, represents the signal without
the plume and we can use an evaluation of off-plume pixels can determine the mean and
covariance of this. Let us suppose that an off-plume analysis provides us with the mean,

µoff = E(τaRg + (1− τa)B(Ta) + e) (16)

and the covariance
Coff = Cov(τaRg + (1− τa)B(Ta) + e) (17)

so that the regression model can be written as;

Robs − µoff = τa(1− τp)(B(Tp)−Rg) + e′ (18)

with Cov(e′) = Coff . We produce a linear regression model by substituting for 1 − τp the
approximation;

1− τp ≈
∑

i

AiCi (19)

to obtain
Robs −Roff = τa(B(Tp)−Rg)(

∑
i

AiCi) + e′ (20)

In order to use this regression model, all terms except for the concentrations (as rep-
resented by Ci must be known. This implies that estimates of τa, Rg, and Tp all must be
available. In practice, one uses a very crude estimate for the Rg; It is commonly assumed
that Rg is a Planck function at a nominal temperature. This assumption is somewhat incon-
sistent with the assumptions that are applied to the off-plume portion of the model, which
also contains the term Rg. In fact, one of the reasons our Bayesian regression can be expected
to work better than this model is because it utilizes off-plume information in a consistent
way.

With this linear regression model now defined, one can produce the standard least-squares
estimator for C which is;

Ĉ = (XTWX)−1XTW (Robs −Roff ) (21)

with;

W = C−1
off

Xji = τa(νj)(B(νj, Tp)−Rg(νj))Ai(νj)

Equation 21 represents the “matched filter” estimator, which, as one can see, originates from
a linear regression model.

7
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3 Methodology for Empirically Producing Clutter Prior

Distributions

In this section, we discuss how one can empirically determine the prior distribution for Rg

(background radiance) using the remote-sensing image. The model we use for this study is
a multivariate normal prior which is determined from off-plume spectra. This methodology
is very similar in spirit to the off-plume analysis used in the match filter. We also discuss
an alternative distribution that is expected to model clutter more accurately than a simple
normal. It is not yet implemented, but would be the next step in algorithm development.

A general advantage of the Bayesian regression methodology is its ability to incorpo-
rate complicated information concerning the nuisance parameters (in this case Rg) into the
estimation algorithm in a fairly automatic way.

3.1 Simple Normal Model for Clutter

It is assumed that one has identified a subset of image pixels that are indeed off-plume, and
are representative of the image pixels otherwise. The basic strategy is to assume that the
prior on Rg is multivariate normal and use the off-plume regression model to relate the mean
and covariance of Rg to the mean and covariance of the observed spectra Robs, which can be
calculated from the pixel subset.

Since there is no plume, the regression model that describes the relationship of the
observed and background spectra in this subset is;

Robs = τaRg + (1− τa)B(Ta) + e (22)

with τa and B(Ta) considered as known quantities, as well as the variance of the error term,
V ar(e).

The mean and covariance of these two spectra, Rg and Robs are therefore related by the
two formulas;

µobs = τaµg + (1− τa)B(Ta) (23)

and
Cobs = diag(τa)Cgdiag(τa) + diag(V ar(e)) (24)

So µobs and Cobs can be calculated from the observations in the identified off-plume subset
and the two formulas presented above can be used to produce to estimates of µg and Cg,
which determines the prior on Rg. In other words, the prior density is;

p(Rg) = φ(Rg;µg, Cg) (25)

In order to reduce the number of parameters required to describe the prior distribution,
an eigen-value decomposition can be performed on Cg to produce the representation in
Equation 14.

This methodology can really be classified as an empirical Bayes approach, (see [1]), a
statistical methodology that is used to estimate priors in Bayesian problems. It should be

8
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noted that many variants of this strategy could be employed (and that is one of its strengths).
The next section discusses an empirical Bayes methodology for fitting a better distribution
than a multivariate normal. However, the simple normal model for the prior is the prior
used in all actual computations that this report presents.

3.2 Improved Prior for Clutter

A simple multivariate normal cannot be expected to fit the background radiance well when
the background consists of highly inhomogeneous pixels. Background radiance from a par-
ticular type of pixel (for example water pixels, or asphalt pixels) can be expected to produce
a distribution that is roughly normal, but when different types of pixels are mixed together,
one can expect the resulting distribution to resemble a mixture of normals. So, to improve
the clutter prior distribution, we propose replacing the simple normal prior with a “mixture
of normals” prior.

The mixture of normals prior is defined as;

p(Rg) =
M∑
i=1

ρiφ(Rg|µi, Ci) (26)

where the index i represents the different “types” of pixels in the scene. The parameter,
ρi, describes the proportion of type i pixels in the scene, and (µi,Ci) define the multivariate
normal distribution applicable to type i pixels. There are two methods one can use to build
a mixture prior of this form, and the methodology one would favor depends upon what
information is available.

Pixel Classification Available: If the pixels in the scene were classified into homogeneous
background types by some auxiliary analysis, one could use this classification to define
the groups. Under this set of circumstances, the off-plume pixels could be broken into
M types, and the mean, µi, and covariance Ci would be calculated for each type with
the use of Equations 23 and 24. The proportion, ρi, would be set to the proportion of
pixels in type i. This would produce a complete mixture prior for clutter.

Pixel Classification Unavailable: If the off-plume pixels were not already classified into
groups, one could use a hierarchical cluster algorithm (such as Splus’s hclust, [9]) to
perform this task. The resulting clusters would not necessarily represent unique pixel
backgrounds, but this fact would not cause problems.

Once the off-plume pixels were divided into suitable classes, one would estimate the
ρi, µi, and Ci using exactly the same methods as in the previous case.

Another feature that might be valuable to incorporate into the clutter prior is some
smoothness; Background spectra are known to be relatively smooth (as compared to gas
spectra), so it may be valuable to have the prior reflect this. To accomplish this we might
choose a class of smooth functions, such as cubic splines, to represent the Rg. We would
substitute the spline model into regression model presented in Equation 22 and fit the model

9
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to each pixel’s data to produce an estimate for Rg. The mean and covariance matrix for the
resulting Rg would then be determined as described previously. However the new covariance
matrix would contain smoothness not present in the unsmoothed covariance matrix.

4 A Simulated Example

To evaluate the Bayesian estimator, we have constructed a simple Monte Carlo program
that simulates Robs according to the model described in Equations 1 to 4. Since this is the
very model that is used to derive the Bayesian regression estimator (and also matched filter
estimator), we would expect its performance to be good. This report will not investigate the
performance of the estimator under other sets of conditions; for example when the physics-
based model is more complex than the simple 3-layer model we have described.

The Monte Carlo simulates Robs differently in one respect than the regression model;
The Bayesian regression model assumes that Rg has a multivariate normal distribution, but
the simulation assumes that this distribution is discrete (in conformance to [8]). A set of
6 different materials (chosen from the NEFDS data set) are used as backgrounds and their
measured emissivities are used to construct Rg. The 6 different materials are randomly
sampled to produce the backgrounds used in the simulation. The emissivities actually used
are presented in Figure 2. The emissivities were chosen to be the extreme representatives
from the NEFDS data set, with the objective of presenting the estimation algorithms with
a difficult clutter problem. Obviously, the difference in performance between the Bayesian
regression and matched filter estimator will be diminished as the backgrounds are made more
homogeneous.

Figures 3 through 4 present the intermediate results of a single simulation. Figure 3
presents Rg, the background radiance and Rp, the plume radiance. As one can see, Rp

closely resembles Rp, except for some very small bumps. These bumps are the “signal” that
the estimation algorithm must use to produce gas concentrations. From this plot, one can
see how important clutter can be to this problem; the bumps that represent the signal could
easily be mistaken for variations in the background signal.

The size of the signal presented in Figure 3 depends upon the gas concentration and
the temperature contrast (i.e., temperature difference between plume and ground). In the
illustrated case, these are relatively small; the temperature contrast is 5C and the effluent
concentrations are 10ppmM. Increasing either of these quantities would make the gas signal
larger.

Figure 4 illustrates what happens to the spectrum after it travels through the atmosphere;
The resulting curve, Ra, is an average of Rp and the atmospheric black-body function,
B(Ta), The final figure, Figure 5, illustrates what instrument noise does to the signal. The
instrument noise is typical for a dispersive instrument, about 0.2% of the observed spectra.

The absorbance spectra of the three gases included in the plume are illustrated in Figure 6.
One gas, ammonia, has one of the strongest absorbance spectra among potential effluents.
It also has an absorbance spectra that differs markedly from background emissivity spectra
and thus should be easiest to estimate. The other effluent absorbance spectra are smoother,
and therefore could be more easily confused with background clutter.

10
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Figure 2: Emissivities of Materials used in the Simulation
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Figure 4: Simulation of Ra
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Figure 5: Simulation of Robs

Rm

nu (cm)-1

R
ad

ia
nc

e

800 900 1000 1100 1200

6*
10

^-
6

8*
10

^-
6

10
^-

5
1.

2*
10

^-
5

1.
4*

10
^-

5

12



PNNL October 2, 2002

Figure 6: Gases Included in the plume
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Table 1 summarizes the major details of the estimation scenario that will be used to
evaluate the estimators described in this report. As one can see, this scenario focuses on
background clutter as a major source of variability.

5 Comparison of Bayesian Clutter Suppression Model

to Matched Filter

Approximately a thousand spectra were simulated under the scenario conditions listed above.
500 ”off-plume” spectra were simulated and used to estimate (1) the prior distribution for the
Bayes estimator, and (2) the mean and covariance for the matched filter. The estimators were
applied to 450 spectra whose effluent gas concentrations ranged from 0ppmM to 110ppmM.
The concentration of the 3 gases were varied in unison over this range.

Tables 2 to 4 present a comparison of the RMSE (root mean squared error) for the two
estimators at selected concentrations. The tables also break RMSE into bias and standard
error. Finally, each table presents the “estimated standard error”; This is the standard error
calculated by the algorithm, and should conform to the standard deviations produced by the
simulation. These estimated standard errors are an important component of an estimation
algorithm. One might go so far as to maintain that an estimation algorithm that cannot
produce a good description of its uncertainty is worse than useless. Of course, a standard
error is a good description of uncertainty only if the estimator bias is near zero.

From the Tables, one can see that the matched filter estimated standard error grossly

13
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Table 1: Scenario Details

Instrument Error: 0.2% of gross background radiation.

Inst. Resolution: 0.25cm−1.

Temperatures: Average ground temperature (Tg): 300C. Av-
erage plume temperature, Tp, and atmosphere tempera-
ture, Ta: 302C. (So there is a 2 degree temperature con-
trast).

Temperature Uncertainty: Stdev(Tg) = 0.5C, Stdev(Tp) =
0.1C and Stdev(Ta) = 0.1C.

Atmospheric Transmissivity, τa: Assumed known. Repre-
sents the standard temperate summer atmosphere.

Effluents Present: Acetoin, NH3, and Butylnitrite.

Effluent Concentration: Concentrations vary from 0 to
110ppmM.

Background Emissivity: Emissivity vectors randomly cho-
sen from 6 emissivities displayed in Figure 2.

Table 2: Acetoin Statistics for Bayes Regression vs Matched Filter

True Conc. Bias Std Dev RMSE
Matched Filter Est. SE: 3.33

0 -0.379 2.48 2.49
10 1.076 8.16 8.15
50 3.507 33.27 33.12
90 16.305 71.58 72.72

Bayes Regr. Est. SE: 4.21
0 1.671 2.98 3.40
10 -0.817 4.65 4.68
50 -0.877 5.43 5.44
90 1.882 5.34 5.61

(All Values in ppmM)
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Figure 7: Estimates for Acetoin

Matched Filter Results, ACETOIN

RMSE= 35  Stderr= 3
true conc. (ppm-m)
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Table 3: NH3 Statistics for Bayes Regression vs Matched Filter

True Conc. Bias Std Dev RMSE
Matched Filter Est. SE: 1.40

0 0.0230 0.959 0.954
10 -0.0677 8.029 7.948
50 -8.6668 34.548 35.282
90 -3.0725 72.332 71.671

Bayes Regr. Est. SE: 2.21
0 0.5746 1.02 1.16
10 0.3971 1.64 1.67
50 -0.1560 2.64 2.62
90 0.3561 2.69 2.68

(All Values in ppmM)

Table 4: Butylnitrite Statistics for Bayes Regression vs Matched Filter

True Conc. Bias Std Dev RMSE
Matched Filter Est. SE: 2.49

0 0.264 1.67 1.68
10 -1.027 10.54 10.49
50 -11.216 43.53 44.52
90 -1.062 93.26 92.33

Bayes Regr. Est. SE: 3.79
0 1.5313 2.58 2.99
10 0.1324 3.11 3.08
50 0.0737 3.93 3.89
90 -0.3439 4.82 4.78

(All Values in ppmM)
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Figure 8: Estimates for NH3

Matched Filter Results, NH3

RMSE= 36  Stderr= 1
true conc. (ppm-m)
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Figure 9: Estimates for Butylnitrite.

Matched Filter Results, BUTN
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underestimates error, except when the gas concentrations are zero. Also, for the matched fil-
ter, a single standard error is inappropriate, because error grows with effluent concentration.
In fact a proportional error description would be most appropriate with the relative stan-
dard deviation (RSD) for the three gases being from 80% to 100%. With a RSD this large,
the matched filter can function poorly even as a gas detector. For the 90ppmM simulation
results, the estimated standard error is off by a factor of 20.

On the other hand, the Bayesian estimated standard error is extremely accurate. The
estimated standard error differs by 20 to 30% from the simulated results. Also, the error
is practically independent of effluent concentration, so a single standard error can describe
uncertainty. For the 90ppmM simulations, the Bayesian RMSE is a factor of 10 lower than
the matched filter results.

Also, the matched filter estimator exhibits significant bias, but the Bayesian estimator is
practically bias free.

In Figures 7 through 9 the estimated values are plotted against true concentrations, to
allow the reader to visually compare the error. The dotted lines in the figures represent the
RMSE at each concentration.

We have run a few variants on the scenario described above to determine how certain
nuisance parameter uncertainties would affect the results and found that Tp is the most
critical nuisance parameter. If we assume that less is known about either the ground or
atmospheric temperatures, (Tg, Ta), Bayesian regression still behaves well because it can
estimate these parameters from the data. On the other hand, the plume temperature, Tp

cannot always be estimated from the data. When the gas concentrations are near zero (so
that the plume is optically thin), the regression algorithm simply propagates the error in Tp

into the concentration estimates, so that a correct standard error is produced.
For the larger concentrations (i.e., 100ppmM), some information about Tp can be ex-

tracted from the data, and one can be less concerned about the a-priori information supplied
for Tp. In all of these cases, Bayesian regression performs better than the matched filter,
however the difference in RMSE is only a factor of 5. These results are obtained when the
prior standard deviations on the temperatures are set to 1C.

6 Conclusions

The Bayesian regression model developed in this report does significantly better at deal-
ing with background clutter than current matched filter methods. Besides producing more
accurate estimates, the Bayesian regression model produces uncertainty estimates that are
accurate, while the matched filter does not. The Bayesian regression methodology also pro-
vides a framework that could be easily extended to include other sources of prior information
and uncertainty.

Specific conclusions are;

Bayesian regression requires a prior distribution to describe clutter (i.e. background vari-
ability). This can be estimated from a suitable set of off-plume pixels.
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Bayesian regression can dramatically reduce the effects of clutter; in realistic cases, by an
order of magnitude.

The Bayesian gas concentration estimates are virtually unbiased.

For Bayesian regression, uncertainties are almost independent of gas concentration, while
for matched filters, it is proportional to gas concentration.

The calculated uncertainty values are in good agreement with the simulated results, while
those of the matched filter too small by orders of magnitude.
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7 Glossary of Terms

C: A vector of gas concentrations (measured in ppmM) present in the plume.

Cov(x): The covariance of the random vector x.

diag(x): A diagonal matrix with entries xi on the main diagonal.

E(x): The expected value of the random vector x.

φ(x, µ, C): A multivariate normal density with mean of µ and covariance matrix of C.

B(ν, T ): A Planck black-body function at temperature T , in Kelvin. ν is the wavenumber
in cm−1.

η: This is used to represent the “nuisance parameters” in a regression model.

Rg, Rp, Ra, Robs: Radiance spectra, with the subscripts indicating the origin of the spectra;
g stands for “ground,” p stands for “plume,” a for “atmosphere,”, and finally obs for
the observed spectrum.

RMSE: Represents root mean squared error, which measures the error between the true

value and an estimate; RMSE =
√
E((Est− True)2).

τa: Transmissivity of the atmosphere.
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